李-凯斯勒方程英文解释翻译、李-凯斯勒方程的近义词、反义词、例句
英语翻译:
【化】 Lee-Kesler equation
分词翻译:
李的英语翻译:
【医】 Prunus salicina Lindl; Prunus triflora Roxb.
凯的英语翻译:
triumphant
斯的英语翻译:
this
【化】 geepound
勒的英语翻译:
rein in; tie sth. tight
【医】 lux; meter candle
方程的英语翻译:
equation
网络扩展解释
李-凯斯勒方程(Liouville-Krein Equation)
李-凯斯勒方程是一个与孤立子方程和Hirota方程相关联的方程。该方程最早由李文正和凯斯勒(Lax,1958)独立发现。它是一个非线性偏微分方程,具有广泛的应用。
中文拼音
Lǐ kǎi sī lè fāng chéng
英语解释翻译
The Liouville-Krein equation is an equation associated with soliton equations and Hirota equations. It was independently discovered by Liouville and Lax in 1958. It is a nonlinear partial differential equation with wide applications.
英文读音
liːuˌvɪl krɛn ɪˈkweɪʒən
英文的用法
The Liouville-Krein equation is used in many areas, including mathematical physics and differential geometry.
英文例句
- The Liouville-Krein equation is a fundamental tool in the study of soliton equations.
- The Liouville-Krein equation has been used to study the stability of solutions to certain nonlinear differential equations.
- Researchers have used the Liouville-Krein equation to investigate the properties of certain manifolds in differential geometry.
英文近义词
- Lax pair
- Hirota equation
- soliton equation
英文反义词
- linear partial differential equation
英文单词常用度
The Liouville-Krein equation is a technical term that is primarily used in specialized areas of mathematics and physics.